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Decay in time of a state subject to a renormalised 
interaction 
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Theoretical Physics Division, Building 424.4, Atomic Energy Research Establishment, 
UKAEA, Harwell, Oxon, UK 

Received 1 August 1983 

Abstract. When a theory containing a divergent level shift is renormalised, all energy 
moments above and including the second (essentially (O(H210)) continue to diverge. A 
mathematical model of this situation is considered and it is shown that the decay of a state 
in time is unambiguous and well behaved, despite the divergences. The only novelty is 
that the usual r2 decay term at small times is replaced by f 2  log f. 

1. Introduction 

Suppose that a Hamiltonian Ho has a discrete solution IO), energy Eo, and a continuum 
of solutions I€ )  with energies E starting at a threshold E =0: 

(010) = 1, 

(EIE ' )= S ( E - E ' ) ,  H O P )  = Elm (1) 

W O )  = EOD 

(01 E )  = 0. 

Eo is assumed positive. The system is in state 10) at time t S 0 .  At t = O ,  a 
time-independent interaction h between 10) and the continuum is switched on. Without 
loss of generality we can assume that this has the properties: 

( 2 )  
The state 10) decays away under the effect of h and this is described by the 'survival 
amplitude': 

(OlhlO) = 0, ( E  I h I E ' )  = 0. 

F ( t )  =(Olexp[-i(H-Eo)t]lO) (3) 

M" =(OI(H-E,)"IO) (4) 

(where we set A = 1). If M,  are the moments: 

where H = Ho+ h, then, if all M, are finite, F ( t )  is given by expanding the exponential 
in (3): 

M,(-it)" 
F( t )=l+  

n=2  n !  

where we have used: MO = 1, MI = 0. At small times, this gives the well known quadratic 
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form of initial decay (e.g. Perez (1980)) 

Eventually, in almost all cases of interest, the leading term in ( F ( t )  - 1) becomes linear 
in r, corresponding to the onset of exponential decay. (There is no contradiction with 
the absence of a linear term in (5). For example, the form (1 + a )  exp(-xd)- 
(Y exp[-x( 1 + a ) ? ]  with x >  0, a > 0 and (Y << 1 has form (6) at small times t<< x-', and 
becomes =exp(-xaf) at times t >> x-'.) 

Perez assumed that M2 is finite. The subject of this work is the effect on F ( t )  of 
the divergence of M,  for n above a certain value. As an extreme case, M 2  diverges 
so that all M,, in (5) diverge. From (4), M2 can be written: 

M2=(OI(H-Eo)210)= loE hf: d E  (7) 

where hE 
h :  

(ElhlO). This can be compared to the level shift of level 10) due to coupling 

&(Eo) = - P  lom-j&dE. 

In a renormalised theory, this quantity initially diverges logarithmically but is rendered 
finite by renormalisation. This procedure will in general not remove the divergence 
of M,, although it will reduce its severity from linear to logarithmic divergence. The 
effect of this divergence has not been studied in previous discussions of decay (Perez 
1980, Fonda et a1 1978). 

One might have guessed that the divergence of all terms in series ( 5 )  would mean 
that no sensible form of F ( t )  of (3) exists, so that such theories are of dubious physical 
relevance. We will see that this is not so, and that F ( t )  is a well defined significant 
quantity even when all M, diverge. However (F( t ) -1)  departs from the usual 
quadratic form at small r, having the form t2  log t. 

In § 2, we summarise some essential results of general decay theory. In § 3, we 
construct the explicit form of F ( t )  for a mathematical model of h i  with convergent 
& and divergent M2. 

2. General decay theory 

The amplitude F (  t )  of (3) can be approached from two directions: the Fourier transform 
of an explicit function, or the solution of an integro-differential equation. 

The first method (e.g. Goldberger and Watson 1964) involves the introduction of 
the function: 

f (  E )  = i Iom F (  t )  exp i( E' - Eo)? dt (9) 
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We retrieve F(t) by inserting this in 
. r m  

F ( t )  =A J f (E)  exp[-i(E -Eo)t] dE. 
27rl -m 

An equivalent form to (10) is 

f (E)  = (Eo- E + S(E))-' (12) 

where 

S ( E )  = - (Olh(H0- E+)-'h10) = - [hg ,  / ( E ' -  E+)] dE' .  5 
The real part, SR(E), equals the principal part (and agrees with (8) when E is chosen 
=Eo) while the imaginary part, S,(E) ,  -- - .rrhg. 

As an alternative to (1 1) 

exp[-i(E-E,)t]Imf(E) d E  
ir 

obtained by changing the contour to one enclosing the positive real axis. In general, 
there would be an additional sum over bound states of H in (14), but the present 
model (1) has none (unless SR(E,) is negative and so large that Eo+ SR(Eo) is negative, 
which possibility we will exclude). From (12) 

I m f ( E )  = . r r h f : / [ ( ~ , + ~ , ( ~ ) - ~ ) ' + r r ' h 4 , ] .  (15) 

The second approach to F(t) (e.g. Perez 1980) may be obtained directly from the 
Schrodinger equation, or from taking the Fourier transform of a version of (12): 

f ( E ) S ( E ) + f ( E ) ( E - E , ) - l  =o. (16) 
It is given by 

d F  
A ( T ) F ( t - - )  d7 

where A ( t )  is related to S ( E )  as F(t) is related to f(E):  

S ( E )  exp[-i(E-Eo)t]dE =- h i  exp[-i(E-Eo)t]dE. (18) 

Integration of (17) gives the alternative form: 

F ( t ) = l +  F(t ' )K(t- t ' )  dt' lor 
where 

K ( 7 )  = J A(t ' )  dt'. 
0 

Defining the moments 
r-oo 
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then, provided these are finite, at small times, A ( t )  of (18) has an expansion like ( 5 ) :  

The relationship between the moments mk and M,  is found by taking (17) at small t ,  

Recalling that MO = 1, M1 = 0, this gives M2 = m2, M3 = m3, M4 = m4+ m:, etc. 
Perez (1980) has discussed low-t decay in terms of moments M,,, assuming that 

these converge. When moments diverge, this does not mean that small-time expansions 
of F ( t )  or A ( t )  do not exist, but simply that the integration on E in (9) or (18) must 
be done before expansion in powers of f ,  not after, these two operations not being 
commutable in general. As an elementary example of this, we may consider the case 

h i  = r - ’ M 2  W/[(E - Eo)’+ W’] (24) 

with Eo so far above threshold that the integration in (18) can be taken from 
(E - Eo) =--OD to +a, then 

(25) A (  t )  = - M 2  exp(- Wf) 

which can be expanded at low t, despite the fact that all mk with k 2 3 diverge. When 
mk with k up to a certain value are finite, they give the correct coefficients in the low 
t expansions of F ( t )  or A ( t ) .  In the present example the value of -(d2F/dt2),,o from 
(17), (25) is M2 and this equals m 2 = M 2  from (21), (24). 

3. Explicit solution for a mathematical model 

We consider the form: 

h i  = M2E/(E2+ W’) (26)  
which has the properties that hg + O  linearly as E + O ,  and h i  + O  like E-‘ when 
E +a. The latter property means that all M,  in ( 5 )  and mk in (21) diverge. 

The first method of solution for F ( t )  based on (14), (15) or (1 l ) ,  (12) leads directly 
to a serious difficulty since &(E) contains a logarithmic part: 

6,( E )  = - [M’/( W2 + E2)][4rr W - E log (E/ W)] (27) 

so the integrations (141, (11) cannot be readily performed. It might be thought to be 
a reasonable procedure to drop the logarithmic term since this is negligible compared 
to other terms as E + 0 and E + 00. Unfortunately this leads to unacceptable results: 
different forms come from (14) and ( l l ) ,  also F ( 0 )  Z 1 and (dF/dt),=, # 0. 

Thus we solve with the second method based on (17) or (19), the key quantity 
being (from (26) and (18)): 
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where P means principal part. In the appendix, we give relevant properties of the 
integral. From now on, we assume that the bandwidth W is much greater than escape 
energy Eo (implying that S,(Eo) of (27) is negative) and consider the time regimes 
t<< W-', W-'<< t<< E;', E;' << t. 

From the appendix, for t << W-' 

A(t)=M2(&7r(l- Wt)+log Wt+y+0((Wt)210g Wt) (30a)  

J ' I K ( t ' )  dt '=M2t2(($log Wt+fy-$+$v+O((Wt) log  Wt))). (30b) 

The last quantity is of interest since, from (19), while F ( t )  is still close to 1, it gives 
the correction F (  t )  - 1. We thus see that the leading correction to F (  t )  at small t is 
not of the familiar t2-form but rather t2  log t 

For W-' << r << E;' 

A ( t )  = M2(( Wt)-'+6( Wt)-'+O(( Wt)-6))) (31a) 

M2 
K ( t )  = - ($i 7r - ( wt  ) -' - 2 wt -3  + O( ( wt ) - 5 ) )  

W 

M 2  
w2 jOr K ( t ' )  dt' = - (%7r Wt - log Wt - $i7r - y + O( ( Wt)-')). 

Thus the correction changes to a linear one when t increases beyond W-'. This remains 
small as t increases towards E;' provided M2<< Eo W i.e. ~ C ~ ~ ( E ~ ) I  << Eo. This condition 
has already been assumed above (1 5 ) .  

For t >> E,' >> W-' (from results in the appendix): 

(1 + o ( ( E o t ) 2 ) )  
iM2Eo exp(iEot) 

W2( Eo@ 
K (  t )  = - iS(Eo) - 

M2 iM2 exp(iEot) 
W W2Eot lor K (U dt '  = - it6 (Eo)  +--I [- 1 +log( Eo/ W) - iv ]  + + O((Eot)-2).  

(32b) 

The leading term in the last quantity is the linear one, so from (19), while F = 1, the 
leading correction to F ( t )  is the same linear term: 

F(t)==l- i t6(Eo)  (33) 

with corrections of order (16(Eo)l/ W )  log(Eo/ W) << 16(Eo)I/Eo and (Eat)-'. 
For T 3  6- ' (E0) ,  corrections to F ( t )  = 1 are large: a first approximation to F ( t )  is 

obtained from (19) on noting from (32a) the near constancy of K ( t )  at the value 
-iS(Eo) for f a  E;' : 

fr-r f T  

F ( t )  = l - i6(Eo)  J F ( t ' )  d t '+F( t )  J K ( t ' )  dt' 
0 0 

('34) 

where T is a time such that E,' << T<< 6(Eo)-'.  From (32), to within a small term 
<< 16(Eo)I/Eo one can set T=O in which case the solution is: 
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An improvement comes from the correction term in (32b) which leads to: 

F ( t )  = 1 -iS(Eo) j o f - T F ( t ’ )  dt ’+F( t )  [oTK(t ’ )  dt’ 

F ( t  - t’) exp(iEot‘) 
t’, 

dt’. 

On trying the solution for t >> T :  

M’ exp(iEor) 
W2(Eot)’ 

F ( t )  =exp(-iS(E,)t)+ (37) 

one finds that it solves (36) to within surviving terms of relative order (S(Eo)/Eo),  
The presence of the long-time correction to exponential decay has, of course, been 
demonstrated before (e.g. Goldberger and Watson 1964, Knight 1977, Fonda et a1 
1978). 

Finally, for comparison, we briefly consider a completely convergent model as an 
alternative to (26): 

h: = M‘EW-‘exp(-E/ W). (38) 
This has the properties that m, = M2 = M2,  and all higher moments are finite. From 
(18): 

A ( t )  =-M2(iEot) / ( l+iWt)2.  (39) 

and for W-‘<< t<< E,’ : 

~ ( t ) =  1 + ~ ~ W - ~ ( i W t - + i ~ - l l o g  Wt+O(Wt)-’). (41) 
The condition that F remains ==l as t + E,’ is, as before, IS(Eo)I << Eo. For t >> E;’, 

we find (32a) again except that S(E,) is now appropriate to model (38), viz for W >> Eo: 

(42) 
All further results (33)-(37) of the previous model apply in the present case. Thus 
the only essential effect of exchanging convergent and divergent models (both satisfying 
the conditions IS(Eo)I<< Eo, h; a E as E + O )  is at very small times t<< W-’ where 
they give tZ  and t 2  log t corrections to F ( t )  = 1. This finding agrees with the principle 
that short-time decay depends only on the large-energy behaviour of h:. 

S (  Eo) = - M 2  W-’( 1 + ivE0 W-I). 

4. Conclusions 

The leading term in the time decay of a state 10) is normally (Perez 1980) 

F (  t )  = 1 - +Mztz 

M2 = (OIH’IO) - (OIH10)’. 

(43) 
where M2 is the second moment: 

(44) 
Perez assumed Mz to be finite. One might have guessed that a divergent value of 
(OIH210) could have drastic consequences for normal decay theory, and possibly lead 
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to unacceptable paradoxes. We have shown by explicit consideration of a simple 
mathematical model that this is not the case. All results of normal theory, such as the 
‘golden-rule’ results (33), (35) apply, the only exception being that the ?-term in 
(43) becomes t 2  log t for t << W-I. This difference is of only academic interest since 
such times t<< W-’ are so small as to be beyond experimental resolution. 

Appendix. Explicit forms implied by model (26) 

The integral in expression (28) for A(?)  can be written thus: 

E eCE 
dE =$(exp( Wt)El( Wt)+exp(- Wt)El(- Wt)] ( A l )  lom E’ -  ( Wt)’ 

and the principal part is taken if x < 0. For small 1x1 << 1, El( * 1x1) is approximated by 

1 1 2  -+-+, , . . 
1x1 lx12 1x1 

In terms of the same quantities El(*Wt),  K ( t )  of (20) is, for t<< E;’: 

K (  t )  = ;M’W-’[i.rr[ 1 - exp(- Wt)] +exp(- Wt)E,(- Wt) - exp( Wr)El( Wt)] 

and its integral is: 

lor K ( t ’ )  dt’= W-2[~id42(exp(-Wt)-1+ Wr)+Re A(t)-M’(y+log Wt)]. 

For general t, these are: 

Eo-iW 
K ( t )  =-i6(Eo)+$MZ eiEor (-ip + El(- Wt) + 

{-(E:- W’)(log E,/ W - i r )  2 
(E:+ W2)2 

1,‘ K ( t ‘) d t’ = - it6 (E,) + $ M 2  

exp(- Wt)El(- Wt) +exp( Wt)E,( Wt) { (E0+iW)’ ( E ,  - i W)’ 
+ TE, w - ( E ;  + w’)} + eiEot 

- 2 - irr exp( Wt)] - ( E: - W2 
E: + W2 (E0+iW)’ ( E :  + W2)’+Eg + W2 
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where 

and we have used the fact that [ ( - [X I )  = [(/xi) - im This has the form for large x: 

[(x) =eix( i /x+ 1/x2+ . . . ). 
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